H2 Sensing Response of Flame-Spray-Made Ru/SnO2 Thick Films Fabricated from Spin-Coated Nanoparticles
نویسندگان
چکیده
High specific surface area (SSA(BET): 141.6 m(2)/g) SnO(2) nanoparticles doped with 0.2-3 wt% Ru were successfully produced in a single step by flame spray pyrolysis (FSP). The phase and crystallite size were analyzed by XRD. The specific surface area (SSA(BET)) of the nanoparticles was measured by nitrogen adsorption (BET analysis). As the Ru concentration increased, the SSA(BET) was found to linearly decrease, while the average BET-equivalent particle diameter (d(BET)) increased. FSP yielded small Ru particles attached to the surface of the supporting SnO(2) nanoparticles, indicating a high SSA(BET). The morphology and accurate size of the primary particles were further investigated by TEM. The crystallite sizes of the spherical, hexagonal, and rectangular SnO(2) particles were in the range of 3-10 nm. SnO(2) nanorods were found to range from 3-5 nm in width and 5-20 nm in length. Sensing films were prepared by the spin coating technique. The gas sensing of H(2) (500-10,000 ppm) was studied at the operating temperatures ranging from 200-350 °C in presence of dry air. After the sensing tests, the morphology and the cross-section of sensing film were analyzed by SEM and EDS analyses. The 0.2%Ru-dispersed on SnO(2) sensing film showed the highest sensitivity and a very fast response time (6 s) compared to a pure SnO(2) sensing film, with a highest H(2) concentration of 1 vol% at 350 °C and a low H(2) detection limit of 500 ppm at 200 °C.
منابع مشابه
Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor
Hydrogen sensing of thick films of nanoparticles of pristine, 0.2, 1.0 and 2.0 atomic percentage of Pt concentration doped ZnO were investigated. ZnO nanoparticles doped with 0.2-2.0 at.% Pt were successfully produced in a single step by flame spray pyrolysis (FSP) technique using zinc naphthenate and platinum(II) acetylacetonate as precursors dissolved in xylene. The particle properties were a...
متن کاملImproving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique
Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD) process on quartz substrates. Afterwards, a thin layer of palladium (Pd) as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors...
متن کاملA Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles
Highly sensitive H2 gas sensors were prepared using pure and Pt-loaded SnO2 nanoparticles. Thick film sensors (~35 μm) were fabricated that showed a highly porous interconnected structure made of high density small grained nanoparticles. Using Pt as catalyst improved sensor response and reduced the operating temperature for achieving high sensitivity because of the negative temperature coeffici...
متن کاملInfluence of Thickness on Ethanol Sensing Characteristics of Doctor-bladed Thick Film from Flame-made ZnO Nanoparticles
ZnO nanoparticles were produced by flame spray pyrolysis (FSP) using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particle properties were analyzed by XRD, BET, and HR-TEM. The sensing films were produced by mixing the particles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder and were fabricated by doctor-blade technique...
متن کاملHydrogen Gas Sensing Properties of Multiwalled Carbon Nanotubes Network Partially Coated with SnO2 Nanoparticles at Room Temperature
In the present work, hydrogen gas sensor of modest sensitivity utilizing functionalized multiwalled carbon nanotubes partially decorated with tin oxide nanoparticles (F-MWCNTs/SnO2) has been fabricated. This sensing material was characterized by scanning electron microscopy (SEM). In addition, a remarkable finding was that the F-MWCNTs/SnO2 sensor shows good sensitivity as compared to F-MWCNTs ...
متن کامل